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Defining GraphQL type APIs

First some imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE OverloadedStrings #-}
module Introduction where

import Protolude

import GraphQL.TypedSchema (Object, Field, Argument, (:>))
import GraphQL.TypedApi (Handler, (:<>)(..))





The core idea for this library is that we define a composite type that
specifies the whole API, and then implement a matching handler.

The main GraphQL entities we care about are Objects and Fields. Each
Field can have arguments.

type HelloWorld = Object "HelloWorld" '[]
  '[ Argument "greeting" Text :> Field "me" Text
   ]





The example above is equivalent to the following GraphQL type:

type HelloWorld {
  me(greeting: String!): String!
}





And if we had a code to handle that type (more later) we could query it like this:

{ me(greeting: "hello") }






The handler

We defined a corresponding handler via the Handler m a which takes
the monad to run in (IO in this case) and the actual API definition
(HelloWorld).

handler :: Handler IO HelloWorld
handler = pure $ (\greeting -> pure (greeting <> " to me")) :<> ()





The implementation looks slightly weird, but it’s weird for good
reasons. In order:


	The first pure allows us to run actions in the base monad (IO
here) before returning anything. This is useful to allocate a resource
like a database connection.

	The pure in the function call allows us to avoid running
actions when the field hasn’t been requested: Each handler is a
separate monadic action so we only perform the side effects for fields
present in the query.

	Finally, we have to terminate each handler with :<> (). This is an
implementation artifact which we’d prefer to avoid but can not at the
moment.
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