

 Navigation

 	
 index

 	
 next |

 	GraphQL API tutorial 0.1 documentation

Welcome to GraphQL API tutorial’s documentation!

Contents:

	Defining GraphQL type APIs

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, teh, jml.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	GraphQL API tutorial 0.1 documentation

Defining GraphQL type APIs

First some imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE OverloadedStrings #-}
module Introduction where

import Protolude

import GraphQL.TypedSchema (Object, Field, Argument, (:>))
import GraphQL.TypedApi (Handler, (:<>)(..))

The core idea for this library is that we define a composite type that
specifies the whole API, and then implement a matching handler.

The main GraphQL entities we care about are Objects and Fields. Each
Field can have arguments.

type HelloWorld = Object "HelloWorld" '[]
 '[Argument "greeting" Text :> Field "me" Text
]

The example above is equivalent to the following GraphQL type:

type HelloWorld {
 me(greeting: String!): String!
}

And if we had a code to handle that type (more later) we could query it like this:

{ me(greeting: "hello") }

The handler

We defined a corresponding handler via the Handler m a which takes
the monad to run in (IO in this case) and the actual API definition
(HelloWorld).

handler :: Handler IO HelloWorld
handler = pure $ (\greeting -> pure (greeting <> " to me")) :<> ()

The implementation looks slightly weird, but it’s weird for good
reasons. In order:

	The first pure allows us to run actions in the base monad (IO
here) before returning anything. This is useful to allocate a resource
like a database connection.

	The pure in the function call allows us to avoid running
actions when the field hasn’t been requested: Each handler is a
separate monadic action so we only perform the side effects for fields
present in the query.

	Finally, we have to terminate each handler with :<> (). This is an
implementation artifact which we’d prefer to avoid but can not at the
moment.

 Copyright 2016, teh, jml.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	GraphQL API tutorial 0.1 documentation

Index

 Copyright 2016, teh, jml.
 Created using Sphinx 1.3.5.

 search.html

 Navigation

 		
 index

 		GraphQL API tutorial 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, teh, jml.
 Created using Sphinx 1.3.5.

_static/up.png

_static/file.png

_static/down-pressed.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

