
GraphQL API tutorial Documentation
Release 0.1

teh, jml

December 19, 2016

Contents

1 Defining GraphQL type APIs 3

2 Indices and tables 5

i

ii

GraphQL API tutorial Documentation, Release 0.1

Contents:

Contents 1

GraphQL API tutorial Documentation, Release 0.1

2 Contents

CHAPTER 1

Defining GraphQL type APIs

First some imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE OverloadedStrings #-}
module Introduction where

import Protolude

import GraphQL.TypedSchema (Object, Field, Argument, (:>))
import GraphQL.TypedApi (Handler, (:<>)(..))

The core idea for this library is that we define a composite type that specifies the whole API, and then implement a
matching handler.

The main GraphQL entities we care about are Objects and Fields. Each Field can have arguments.

type HelloWorld = Object "HelloWorld" '[]
'[Argument "greeting" Text :> Field "me" Text
]

The example above is equivalent to the following GraphQL type:

type HelloWorld {
me(greeting: String!): String!

}

And if we had a code to handle that type (more later) we could query it like this:

{ me(greeting: "hello") }

1.1 The handler

We defined a corresponding handler via the Handler m a which takes the monad to run in (IO in this case) and the
actual API definition (HelloWorld).

handler :: Handler IO HelloWorld
handler = pure $ (\greeting -> pure (greeting <> " to me")) :<> ()

The implementation looks slightly weird, but it’s weird for good reasons. In order:

• The first pure allows us to run actions in the base monad (IO here) before returning anything. This is useful to
allocate a resource like a database connection.

3

GraphQL API tutorial Documentation, Release 0.1

• The pure in the function call allows us to avoid running actions when the field hasn’t been requested: Each
handler is a separate monadic action so we only perform the side effects for fields present in the query.

• Finally, we have to terminate each handler with :<> (). This is an implementation artifact which we’d prefer
to avoid but can not at the moment.

4 Chapter 1. Defining GraphQL type APIs

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

5

	Defining GraphQL type APIs
	Indices and tables

